You are using staging server - a separate instance of the ESP Component Registry that allows you to try distribution tools and processes without affecting the real registry.

dmitry/cmp_with_different_langs

1.0.0

uploaded 1 year ago
# Simple Test MathJax

$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

$$ \left[
\begin{array}{cc|c}
  1&2&3\\
  4&5&6
\end{array}
\right] $$

$$
\usepackage{amsmath, xparse} \begin{bmatrix}a & b\\c & d\end{bmatrix} $

$$
\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2} \leq
\left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
$$

$$
\mathbf{V}_1 \times \mathbf{V}_2 =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\
\end{vmatrix}
$$

$$
\[
\frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } }
\]
$$

$$
\[
1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
 \quad\quad \text{for $|q| < 1$}.
\]
$$

$$
\begin{align}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\
\nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{align}
$$

Supports all targets

License: MIT

To add this component to your project, run:

idf.py add-dependency "dmitry/cmp_with_different_langs^1.0.0"

or download archive

Stats

  • Downloaded in total
    Downloaded in total 4 times
  • Downloaded this version
    This version: 4 times

Badge

dmitry/cmp_with_different_langs version: 1.0.0
|